Extensions 1→N→G→Q→1 with N=C3 and Q=C22.32C24

Direct product G=NxQ with N=C3 and Q=C22.32C24
dρLabelID
C3xC22.32C2448C3xC2^2.32C2^4192,1427

Semidirect products G=N:Q with N=C3 and Q=C22.32C24
extensionφ:Q→Aut NdρLabelID
C3:1(C22.32C24) = C24.41D6φ: C22.32C24/C2xC22:C4C2 ⊆ Aut C348C3:1(C2^2.32C2^4)192,1053
C3:2(C22.32C24) = C42:19D6φ: C22.32C24/C4xD4C2 ⊆ Aut C348C3:2(C2^2.32C2^4)192,1119
C3:3(C22.32C24) = C24.46D6φ: C22.32C24/C22wrC2C2 ⊆ Aut C348C3:3(C2^2.32C2^4)192,1152
C3:4(C22.32C24) = C6.422+ 1+4φ: C22.32C24/C4:D4C2 ⊆ Aut C348C3:4(C2^2.32C2^4)192,1172
C3:5(C22.32C24) = C6.462+ 1+4φ: C22.32C24/C4:D4C2 ⊆ Aut C348C3:5(C2^2.32C2^4)192,1176
C3:6(C22.32C24) = C6.562+ 1+4φ: C22.32C24/C22:Q8C2 ⊆ Aut C348C3:6(C2^2.32C2^4)192,1203
C3:7(C22.32C24) = C6.612+ 1+4φ: C22.32C24/C22.D4C2 ⊆ Aut C348C3:7(C2^2.32C2^4)192,1216
C3:8(C22.32C24) = C42:22D6φ: C22.32C24/C4.4D4C2 ⊆ Aut C348C3:8(C2^2.32C2^4)192,1237
C3:9(C22.32C24) = C42:25D6φ: C22.32C24/C42:2C2C2 ⊆ Aut C348C3:9(C2^2.32C2^4)192,1263


׿
x
:
Z
F
o
wr
Q
<